(1)所得实验数据如下表,请在图2中画出U﹣I的图象.
U/V1.961.861.801.841.641.56
I/A0.050.150.250.350.450.55
(2)根据所画的U﹣I图象,可求得电流I=0.20A时电源的输出功率约为0.37 W(保留两位有效数字).
(3)(多选题)实验完成后,该同学对实验方案进行了反思,认为按图甲电路进行实验操作的过程中存在安全隐患,并对电路重新设计.在图3所示的电路中(Rx阻值未知),你认为既能测出电源在不同负载下的输出功率,又能消除安全隐患的是
考点:电功、电功率
专题:实验题;恒定电流专题.
分析:(1)根据表中实验数据在坐标系中描点,然后根据描出的点作出U﹣I图象.(2)由图象找出电路电流为0.20A时的路端电压,然后由P=UI求出电源的输出功率.(3)根据电路图,分析电路结构,然后答题.
解答:解:(1)根据表中实验数据在坐标系中描点,然后作出图象,U﹣I图象如图所示;(2)由图象可知,电流I=0.20A时,电源输出电压为1.84V,电源的输出功率为P=UI=1.84×0.20W≈0.37W.(3)A、当滑动变阻器滑动片滑动到最右端,电源短路,存在安全隐患,故A错误;B、滑动变阻器采用分压接法,既能保护电路,又能测测出电源的输出功率,故B正确;C、滑动变阻器采用限流接法,既能保护电路,又能测测出电源的输出功率,故C正确;D、电压表测滑动变阻器两端电压,并不能测出电路的路端电压,该电路能保证电路安全,但不能测出电源的输出功率,故D错误;故答案为:(1)图象如图所示;(2)0.37;(3)BC.
点评:应用图象法处理实验数据是常用的实验数据处理方法,要掌握描点法作图的方法.
10.(15分)(2011•山东)如图所示,在高出水平地面h=1.8m的光滑平台上放置一质量M=2kg、由两种不同材料连接成一体的薄板A,其右段长度l1=0.2m且表面光滑,左段表面粗糙.在A最右端放有可视为质点的物块B,其质量m=1kg.B与A左段间动摩擦因数μ=0.4.开始时二者均静止,现对A施加F=20N水平向右的恒力,待B脱离A(A尚未露出平台)后,将A取走.B离开平台后的落地点与平台右边缘的水平距离x=1.2m.(取g=10m/s2)求
(1)B离开平台时的速度vB.
(2)B从开始运动到刚脱离A时,B运动的时间tB和位移xB.
(3)A左端的长度l2.
考点:动能定理的应用;匀变速直线运动的位移与时间的关系;牛顿第二定律;平抛运动
分析:对A、B隔离受力分析,根据受力情况再做运动过程情况分析,根据运动性质结合物理规律解决问题.要注意物体运动的位移指的是相对于地面的位移.要善于画出运动过程的位置图象,有利于解题.
解答:解:(1)设物块平抛运动的时间为t,由平抛运动规律得:h=gt2,x=vBt联立解得vB=2m/s.(2)设B的加速度为aB,B在A的粗糙表面滑动,受向右的滑动摩擦力做匀加速直线运动.由牛顿第二定律,F合=μmg=maB,由匀变速直线运动规律,vB=aBtB,xB=aBtB2,联立解得:tB=0.5s,xB=0.5m.(3)设B刚好开始运动时A的速度为v,以A为研究对象,由动能定理得Fl1=Mv12设B运动后A的加速度为aA,由牛顿第二定律和运动学的知识得:F﹣μmg=MaA,(l2+xB)=v1tB+aAtB2,联立解得l2=1.5m.答:(1)B离开平台时的速度vB为2m/s.(2)B运动的时间tB为0.5s,位移xB为0.5m.(3)A左端的长度l2为1.5m.
点评:能够根据物体的受力情况确定物体的运动情况,运用牛顿第二定律和运动学公式解决.动能定理的应用要注意过程的选取和总功的求解.
11.(18分)(2011•山东)扭摆器是同步辐射装置中的插入件,能使粒子的运动轨迹发生扭摆.其简化模型如图Ⅰ、Ⅱ两处的条形均强磁场区边界竖直,相距为L,磁场方向相反且垂直纸面.一质量为m、电量为﹣q、重力不计的粒子,从靠近平行板电容器MN板处由静止释放,极板间电压为U,粒子经电场加速后平行于纸面射入Ⅰ区,射入时速度与水平和方向夹角θ=30°.
(1)当Ⅰ区宽度L1=L、磁感应强度大小B1=B0时,粒子从Ⅰ区右边界射出时速度与水平方向夹角也为30°,求B0及粒子在Ⅰ区运动的时间t0;
(2)若Ⅱ区宽度L2=L1=L磁感应强度大小B2=B1=B0,求粒子在Ⅰ区的最高点与Ⅱ区的最低点之间的高度差h;
(3)若L2=L1=L、B1=B0,为使粒子能返回Ⅰ区,求B2应满足的条件;
(4)若B1≠B2、L1≠L2,且已保证了粒子能从Ⅱ区右边界射出.为使粒子从Ⅱ区右边界射出的方向与从Ⅰ区左边界射入的方向总相同,求B1、B2、L1、L2、之间应满足的关系式.
考点:带电粒子在匀强磁场中的运动
分析:(1)加速电场中,由动能定理求出粒子获得的速度.画出轨迹,由几何知识求出半径,根据牛顿定律求出B0.找出轨迹的圆心角,求出时间.(2)由几何知识求出高度差.(3)当粒子在区域Ⅱ中轨迹恰好与右侧边界相切时,粒子恰能返回Ⅰ区.由几何知识求出半径,由牛顿定律求出B2满足的条件.(4)由几何知识分析L1、L2与半径的关系,再牛顿定律研究关系式.
解答:解:(1)如图所示,设粒子射入磁场区域Ⅰ时的速度为v,匀速圆周运动的半径为R1. 根据动能定理,得 qU=mv2 ① 由牛顿定律,得qvB0=m ② 由几何知识,得L=2R1sinθ=R1 ③ 联立代入数据解得B0= ④ 粒子在磁场Ⅰ区域中运动的时间为t0= ⑤ 联立上述①②③④⑤解得 t0=(2)设粒子在磁场Ⅱ区中做匀速圆周运动的半径为R2,由牛顿第二定律得qvB2=m 由于B2=B1,得到R2=R1=L 由几何知识可得 h=(R1+R2)(1﹣cosθ)+Ltanθ 联立,代入数据解得h=(2﹣)L (3)如图2所示,为使粒子能再次回到I区,应满足 R2(1+sinθ)<L 代入数据解得 B2>h (4)如图3所示,设粒子射出磁场I区时速度与水平方向的夹角为α, 由几何知识可得L1=R1 (sinθ+sinα) L2=R2 (sinθ+sinα 联立解得B1R1=B2R2 又R1= R2= 解得B1L1=B2L2答:(1)B0=,t0=. (2)粒子在Ⅰ区的最高点与Ⅱ区的最低点之间的高度差h=(2﹣)L. (3)为使粒子能返回Ⅰ区,B2应满足的条件是B2>. (4)为使粒子从Ⅱ区右边界射出的方向与从Ⅰ区左边界射入的方向总相同,B1、B2、L1、L2、之间应满足的关系式是B1L1=B2L2.
点评:本题的难点在于分析临界条件,粒子恰好穿出磁场时,其轨迹往往与边界相切.
【物理-选修3-3】(8分)
12.(4分)(2011•山东)人类对物质属性的认识是从宏观到微观不断深入的过程.以下说法正确的是()
A.液体的分子势能与体积有关
B.晶体的物理性质都是各向异性的
C.温度升高,每个分子的动能都增大
D.露珠呈球状是由于液体表面张力的作用
考点:* 晶体和非晶体;* 液体的表面张力现象和毛细现象
分析:分子势能与物体的体积有关.晶体分单晶体和多晶体,物理性质不同.温度决定分子平均动能.露珠是液体表面张力作用的结果
解答:解:A、物体体积变化时,分子间的距离将发生改变,分子势能随之改变,所以分子势能与体积有关,故A正确B、晶体分为单晶体和多晶体,单晶体的物理性质各向异性,多晶体的物理性质各向同性,故B错误.C、温度是分子平均动能的标志,具有统计的意义,故C错误.D、液体表面的张力具有使液体表面收缩到最小的趋势,故D正确.故选:A D