=1099(平方厘米)
3.14×(10÷2)2×30
=3.14×25×30
=78.5×30
=2355(立方厘米)
答:这个圆柱的表面积是1099平方厘米,体积是2355立方厘米.
(3)3.14×10×2×15+3.14×102×2
=62.8×15+3.14×100×2
=942+628
=1570(平方厘米)
3.14×102×15
=3.14×100×15
=314×15
=4710(立方厘米)
答:这个圆柱的表面积是1570平方厘米,体积是4710立方厘米.
【点评】此题主要考查长方体、圆柱体的表面积公式、体积公式的灵活运用,关键是熟记公式.
五.操作题(共2小题,满分4分,每小题2分)
27.【分析】根据平移的特征,把三角形的各顶点分别向右平移6格,依次连结即可得到向右平移6格后的图形;用同样的方法,即可把平移后的图形再向上平移4格。
【解答】解:把三角形先向右平移6格(图中红色部分)再向上平移4格(图中绿色部分),画出平移后的图形。
【点评】平移作图要注意:①方向;②距离。整个平移作图,就是把整个图案的每一个特征点按一定方向和一定的距离平行移动。
28.【分析】根据旋转的特征,把长方形各顶点绕C点顺时针旋转90°,顺次连结即可。
【解答】解:作图如下:
【点评】先描出各点旋转后的位置,再顺次连结各点。
六.应用题(共5小题,满分25分,每小题5分)
29.【分析】根据题意,图上距离和比例尺已知,依据“实际距离=图上距离÷比例尺”即可分别求出这个水池的长、宽、深的实际长度。
【解答】解:15÷=3000(厘米),3000厘米=30米
12÷=2400(厘米),2400厘米=24米
2.5÷=500(厘米),500厘米=5米
答:按图施工,这个水池的长是30米,宽是24米,深是5米。
【点评】此题主要考查图上距离、实际距离和比例尺的关系的运用.
30.【分析】要求这堆沙子的重量,先求得沙子的体积,沙子的形状是圆锥形的,利用圆锥的体积计算公式求得体积,进一步再求沙子的重量,问题得解..
【解答】解:沙子的体积:
×3.14×(12.56÷3.14÷2)2×1.2
=×3.14×22×1.2
=5.024(立方米)
沙子的重量:5.024×1.7≈9(吨)
答:这个圆锥形沙堆的体积是5.024立方米,这堆沙子约重9吨.
【点评】本题主要考查圆锥的体积公式(V=sh=πr2h)的应用,运用公式计算时不要漏乘.