①做正方形的另一条对角线。得到四个完全相同的等腰直角三角形。
②一个等腰直角三角形的面积是:
8÷2=4(直角边)
4×4÷2=8(平方米)
③四个等腰直角三角形的面积,即正方形的面积。
8×4=32(平方米)
小学六年级奥数题及答案12
1、一辆大轿车与一辆小轿车都从甲地驶往乙地。大轿车的速度是小轿车速度的80%。已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地。又知大轿车是上午10时从甲地出发的。那么小轿车是在上午什么时候追上大轿车的。
答案与解析:
这个题目和第8题比较近似。但比第8题复杂些!
大轿车行完全程比小轿车多17-5+4=16分钟
所以大轿车行完全程需要的时间是16÷(1-80%)=80分钟
小轿车行完全程需要80×80%=64分钟
由于大轿车在中点休息了,所以我们要讨论在中点是否能追上。
大轿车出发后80÷2=40分钟到达中点,出发后40+5=45分钟离开
小轿车在大轿车出发17分钟后,才出发,行到中点,大轿车已经行了17+64÷2=49分钟了。
说明小轿车到达中点的时候,大轿车已经又出发了。那么就是在后面一半的路追上的。
既然后来两人都没有休息,小轿车又比大轿车早到4分钟。
那么追上的时间是小轿车到达之前4÷(1-80%)×80%=16分钟
所以,是在大轿车出发后17+64-16=65分钟追上。
所以此时的时刻是11时05分。
2、客车和货车分别从甲、乙两站同时相向开出,第一次相遇在离甲站40千米的地方,相遇后辆车仍以原速度继续前进,客车到达乙站、货车到达甲站后均立即返回,结果它们又在离乙站20千米的地方相遇。求甲、乙两站之间的距离。
答案与解析:
第一次相遇时,客车、货车共行走了1倍的甲、乙全长;也就是第二次相遇距出发时间是第一次相遇距出发时间的3倍,第一次甲行走了40千米,则第二次甲行走了40×3=120千米。那么有120-20=100千米即为甲、乙的全长。
小学六年级奥数题及答案13
甲、乙、丙三辆汽车在环形马路上同向行驶,甲车行一周要36分钟,乙车行一周要30分钟,丙车行一周要48分钟,三辆汽车同时从同一个起点出发,问至少要多少时间这三辆汽车才能同时又在起点相遇?
答案与解析:要求多少时间才能在同一起点相遇,这个时间必定同时是36、30、48的倍数。因为问至少要多少时间,所以应是36、30、48的最小公倍数。36、30、48的最小公倍数是720。
答:至少要720分钟(即12小时)这三辆汽车才能同时又在起点相遇。
小学六年级奥数题及答案14
题目:
一块牧场长满了草,每天均匀生长。这块牧场的'草可供10头牛吃40天,供15头牛吃20天。可供25头牛吃多少天?
答案与解析:
假设1头牛1天吃草的量为1份
(1)每天新生的草量为:(10×40-15×20)÷(40-20)=5(份);
(2)原来的草量为:10×40-40×5=200(份);
(3)安排5头牛专门吃每天新长出来的草,这块牧场可供25头牛吃:200÷(25-5)=10(天)。
小学六年级奥数题及答案15
甲、乙两人分别以每小时6千米和每小时4千米的速度从相距30千米的两地向对方的出发地前进.当两人之间的距离是10千米时,他们走了________小时.
答案与解析:
本题有两种情况,一种是甲、乙两人还未相遇过,此时两人一共走了30-10=20(千米),另一种是甲、乙两人相遇过后继续向前走到相距10千米,一共走了30+10=40(千米),所以有两种答案:(30-10)(6+4)=2(小时);或(30+10)(6+4)=4(小时).