1、用字母表示数的意义
①用字母不仅可以表示未知数,还可以表示已知量;不仅可以表示特定的数,还可以表示一定范围内变化着的数。
②含有字母的式子可以看作数量间的关系,也可以看做运算的结果。
2、用字母表示数的规则
①数字与字母、字母与字母相乘时,乘号可以记作“·”,或者省略不写,数字要写在字母的前面。
②当1与任何字母相乘时,1省略不写。
③在一个问题中,不同的量用不同的字母来表示,而不能用同一个字母表示。
④用含有字母的式子表示问题的答案时,除法结果一般要写成分数形式;如果式子中有加、减、乘、除运算时,要先进行适当的运算,再用括号把含有字母的式子括起来,并在括号后面写上单位名称。
⑤具体问题中,字母表示的数总是有一定范围的。
3、用字母表示常见的数量关系
如路程、速度和时间的关系(s、v、t)和总价、单价和数量的关系(a、b、c)等
4、用字母表示运算定律和运算性质
加法交换律、结合律;乘法交换律、结合律和分配律等
5、用字母表示几何图形的周长、面积、体积计算公式。
(二)、简易方程
1、方程和等式
等式:表示相等关系的式子叫做等式。
方程:含有未知数的等式叫做方程。
他们的关系如下:
2、解方程。
解方程:求方程中未知数的值的过程叫做解方程。
解方程的依据:等式的性质。
①等式两边同时加上或减去同一个数,所得结果仍然是等式。
②等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。
3、列方程法解决问题的一般步骤
①弄清题意,确定未知数并用x表示(也可以用其他字母表示)。
②找出题中的数量之间的相等关系。
③列方程,解方程。
④检查或验算,写出答案。
四、比与比例
一、比与比例
两个数的比表示两个数相除。
表示两个比相等的式子叫做比例。
基本性质
比的前项和后项同时乘或除以相同的数(0除外),比值不变。
在比例里,两个外项的积等于两个内项的积。
二、比、分数与除法
三、求比值和化简比
一般方法
结果