组合图形:当组合图形是凸出的,用两种或三种简单图形面积相加进行计算。
27、平行四边形面积公式推导:剪拼、平移
平行四边形可以转化成一个长方形;
长方形的长相当于平行四边形的底;
长方形的宽相当于平行四边形的高;
长方形的面积等于平行四边形的面积,因为长方形面积=长×宽,所以平行四边形面积=底×高。
28、三角形面积公式推导:旋转
两个完全一样的三角形可以拼成一个平行四边形,平行四边形的底相当于三角形的底;
平行四边形的高相当于三角形的高;
平行四边形的面积等于三角形面积的2倍,因为平行四边形面积=底×高,所以三角形面积=底×高÷2。
29、梯形面积公式推导:旋转
两个完全一样的梯形可以拼成一个平行四边形。平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2。
30、等底等高的平行四边形面积相等;等底等高的三角形面积相等。
31、等底等高的平行四边形面积是三角形面积的2倍。
32、长方形框架拉成平行四边形,周长不变,面积变小。
33、组合图形面积计算:必须转化成已学的简单图形。
当组合图形是凸出的,用虚线分割成几种简单图形,把简单图形面积相加计算。
当组合图形是凹陷的,用虚线补齐成一种最大的简单图形,用最大简单图形面积减几个较小的简单图形面积进行计算。
第七单元植树问题
34、不封闭栽树问题:
(1)一条路的一边两端都栽树=路长÷间隔+1;已知间隔数,树的棵树,求路长。路长=间隔数×(树的棵树-1)
(2)一条路的两边两端都栽树=(路长÷间隔+1)×2
(3)一条路的一边两端不栽树=路长÷间隔-1
(4)一条路的两边两端不栽树=(路长÷间隔-1)×2
(5)锯木头时间问题:锯一段木头时间=总时间÷(段数-1)
35、封闭图形四周栽树问题:栽树棵树=周长÷间隔
36、鸡兔同笼问题:(龟鹤问题、大船小船问题)
(1)算术假设法1:假设几只都是兔子,(都是脚多的兔子),先求鸡的只数。
鸡的只数:(总头数×4-总脚数)÷(4-2即一只兔的脚数减去一只鸡的脚数)
兔的只数:总头数-鸡的只数
算术假设法2:假设几只都是鸡,(都是脚少的鸡),先求兔子的只数。
兔子的只数:(总脚数-总头数×2)÷(4-2即一只兔的脚数减去一只鸡的脚数)
鸡的只数:总头数-兔子的只数
(2)方程法:设兔子有x只,则兔子脚有2x只。那么鸡有(总头数-x)只。
根据“兔子脚+鸡脚=总脚数”列方程解答先求兔子只数,再算出鸡的只数。
即:4x+2×(总头数-x)=总脚数
36、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。(习惯上我们从左面、正面、上面看,把这三种视图统称三视图)
37、图形的运动:轴对称图形。
(1)沿一条直线对折后,两边完全重合的图形叫做轴对称图形,这条直线叫做对称轴。圆有无数条对称轴。正方形有4条对称轴。等边三角形有3条对称轴。长方形有2条对称轴。等腰三角形和等腰梯形有1条对称轴。
(2)轴对称图形的特点:沿对称轴对折,两边完全重合。‚每一组对应点到对称轴距离度相等。对应点之间的连线与对称轴互相垂直。