反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。
解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目
的要求算出结果。
数量关系式:单一量×份数=总数量(正归一)
总数量÷单一量=份数(反归一)
例一个织布工人,在七月份织布4774米,照这样计算,织布6930米,需要多少天?
分析:必须先求出平均每天织布多少米,就是单一量。6930÷(4774÷31)=45(天)
(3)归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。
特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法
彼此相通。
数量关系式:单位数量×单位个数÷另一个单位数量=另一个单位数量单位数量×单位个数÷另一个单位数量=另一个单位数量。
例修一条水渠,原计划每天修800米,6天修完。实际4天修完,每天修了多少米?
分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。800×6÷4=1200(米)
(4)和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。
解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。
解题规律:(和+差)÷2=大数大数-差=小数
(和-差)÷2=小数和-小数=大数
例某加工厂甲班和乙班共有工人94人,因工作需要临时从乙班调46人到甲班工作,这时乙班比甲
班人数少12人,求原来甲班和乙班各有多少人?
分析:从乙班调46人到甲班,对于总数没有变化,现在把乙数转化成2个乙班,即94-12,由此得到现在的乙班是(94-12)÷2=41(人),乙班在调出46人之前应该为41+46=87(人),甲班为94-87=7(人)
(5)和倍问题:已知两个数的和及它们之间的倍数关系,求两个数各是多少的应用题,叫做和倍问题。
解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍
数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求
另一个数(或几个数)的数量。
解题规律:和÷倍数和=标准数标准数×倍数=另一个数
例:汽车运输场有大小货车115辆,大货车比小货车的5倍多7辆,运输场有大货车和小汽车各有多
少辆?
分析:大货车比小货车的5倍还多7辆,这7辆也在总数115辆内,为了使总数与(5+1)倍对应,总车辆数应(115-7)辆。
列式为(115-7)÷(5+1)=18(辆),18×5+7=97(辆)
(6)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。
解题规律:两个数的差÷(倍数-1)=标准数标准数×倍数=另一个数。
例甲乙两根绳子,甲绳长63米,乙绳长29米,两根绳剪去同样的长度,结果甲所剩的长度是乙
绳长的3倍,甲乙两绳所剩长度各多少米?各减去多少米?
分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的3倍,实比乙绳多(3-1)倍,以乙绳的长度为标准数。列式(63-29)÷(3-1)=17(米),乙绳剩下的长度,17×3=51(米),甲绳剩下的长度,29-17=12(米),剪去的长度。
(7)行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类
问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据
这类问题的规律解答。
解题关键及规律:
同时同地相背而行:路程=速度和×时间。
同时相向而行:相遇时间=速度和×时间