(第六届小数报决赛)A 8.8 8.98 8.998 8.9998 8.99998,A的整数部分是 .
【题目答案】
【题-001解答】抽屉原理
首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果.把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉.由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的
【题-002解答】牛吃草
这类问题,都有它共同的特点,即总水量随漏水的延长而增加.所以总水量是个变量.而单位时间内漏进船的水的增长量是不变的.船内原有的水量(即发现船漏水时船内已有的水量)也是不变的量.对于这个问题我们换一个角度进行分析。
如果设每个人每小时的淘水量为"1个单位".则船内原有水量与3小时内漏水总量之和等于每人每小时淘水量×时间×人数,即1×3×10=30.
船内原有水量与8小时漏水量之和为1×5×8=40。
每小时的漏水量等于8小时与3小时总水量之差÷时间差,即(40-30)÷(8-3)=2(即每小时漏进水量为2个单位,相当于每小时2人的淘水量)。
船内原有的水量等于10人3小时淘出的总水量-3小时漏进水量.3小时漏进水量相当于3×2=6人1小时淘水量.所以船内原有水量为30-(2×3)=24。
如果这些水(24个单位)要2小时淘完,则需24÷2=12(人),但与此同时,每小时的漏进水量又要安排2人淘出,因此共需12+2=14(人)。
从以上这两个例题看出,不管从哪一个角度来分析问题,都必须求出原有的量及单位时间内增加的量,这两个量是不变的量.有了这两个量,问题就容易解决了。
【题-003解答】奇偶性应用
要使一只杯子口朝下,必须经过奇数次"翻转".要使9只杯子口全朝下,必须经过9个奇数之和次"翻转".即"翻转"的总次数为奇数.但是,按规定每次翻转6只杯子,无论经过多少次"翻转",翻转的总次数只能是偶数次.因此无论经过多少次"翻转",都不能使9只杯子全部口朝下。
【题-004解答】整除问题
∵被除数=除数×商+余数,
即被除数=除数×40+16。
由题意可知:被除数+除数=933-40-16=877,
∴(除数×40+16)+除数=877,
∴除数×41=877-16,
除数=861÷41,
除数=21,
∴被除数=21×40+16=856。
答:被除数是856,除数是21
【题-005解答】填数字:
解此类数独题的关键在于观察那些位置较特殊的方格(对角线上的或者所在行、列空格比较少的),选作突破口.本题可以选择两条对角线上的方格为突破口,因为它们同时涉及三条线,所受的限制最严,所能填的数的空间也就最小.
副对角线上面已经填了2,3,8,6四个数,剩下1,4,5和7,这是突破口.观察这四个格,发现左下角的格所在的行已经有5,所在的列已经有1和 4,所以只能填7.然后,第六行第三列的格所在的行已经有5,所在的列已经有4,所以只能填1.第四行第五列的格所在的行和列都已经有5,所以只能填4,剩下右上角填5.
再看主对角线,已经填了1和2,依次观察剩余的6个方格,发现第四行第四列的方格只能填7,因为第四行和第四列已经有了5,4,6,8,3.再看第五行第五列,已经有了4,8,3,5,所以只能填6.
此时似乎无法继续填主对角线的格子,但是,可观察空格较少的行列,例如第四列已经填了5个数,只剩下1,2,5,则很明显第六格填2,第八格填1,第三格填5.此时可以填主对角线的格子了,第三行第三列填8,第二行第二列填3,第六行第六列填4,第七行第七列填5.
继续依次分析空格较少的行和列(例如依次第五列、第三行、第八行、第二列……),可得出结果如下图.
【题-006解答】灌水问题:
如第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开1小时,恰好在打开丙管1小时后灌满空水池,则第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,应在打开甲管1小时后灌满一池水.不合题意.
如第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开1小时,恰好在打开乙管1小时后灌满空水池,则第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,应在打开丙管45分钟后灌满一池水;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,应在打开甲管后15分钟灌满一池水.比较第二周和第三周,发现开乙管1小时和丙管45分钟的进水量与开丙管、乙管各1小时加开甲管15分钟的进水量相同,矛盾.
所以第一周是在开甲管1小时后灌满水池的.比较三周发现,甲管1小时的进水量与乙管45分钟的进水量相同,乙管30分钟的进水量与丙管1小时的进水量相同.三管单位时间内的进水量之比为3:4:2.
【题-007解答】 浓度问题
【题-008解答】水和牛奶
【题-009解答】 巧算:
本题的重点在于计算括号内的算式:.这个算式不同于我们常见的分数裂项的地方在于每一项的分子依次成等差数列,而非常见的分子相同、或分子是分母的差或和的情况.所以应当对分子进行适当的变形,使之转化成我们熟悉的形式.
法一:
观察可知5=2+3,7=3+4,……即每一项的分子都等于分母中前两个乘数的和,所以