一个重要结论:同一平面内,垂直于同一直线的两条直线互相平行。
4、平行线的性质:①两直线平行,同位角相等;
②两直线平行,内错角相等;
③两直线平行,同旁内角互补。
一个结论:平行线间的距离处处相等。例如:应用于说明矩形(包括长方形、正方形)的对边相等,还有梯形的对角线把梯形分成分别以上底为底的两等面积的三角形,或以下底为底的两等面积的三角形。(因为梯形的上底与下底平行,平行线间的高相等,所以,就有等底等高的三角形。)
5、命题
判断一件事情的语句叫命题。命题包括“题设”和“结论”两部分,可写成“如果……那么……”的形式。
例如:“明天可能下雨。”这句语句命题,而“今天很热,明天可能下雨。”这句语句命题。(填“是”或“不是”)
1命题分为真命题与假命题,真命题指题设成立,结论也成立的命题(或说正确的命题)。假命题指题设成立,但结论不一定或根本不成立的命题(或说错误的命题)。
2逆命题:将一个命题的题设与结论互换位置之后,形成新的命题,就叫原命题的逆命题。
注:原命题是真命题,其逆命题不一定仍为真命题,同理,原命题为假命题,其逆命题也不一定为假命题。
例如:“对顶角相等”是个真命题,但其逆命题“”却是个假命题。
不论是真命题还是假命题,都要学会能非常熟练地把一个命题写成“如果……那么……”的形式。例:把“等角的补角相等”写成“如果……那么……”的形式为:。
再例:把“三角形的内角和等于180度。”写成包含题设与结论的形式:。
三、平移
1、概念:把图形的整体沿着某一方向移动一定的距离,得到一个新的图形,这种图形的移动,叫平移。
确定平移,关键是要弄清平移的方向(并不一定是水平移动或垂直移动哦)与平移的距离。如果是斜着平移的,则需把由起始位置至最终位置拆分为先水平移动,再上下移动,或拆分为先上下移动,再水平移动。当然,如果是在格点图内平移,则可利用已知点的平移距离是某一矩形的对角线这一特点来对应完成其它顶点的平移。
2、特征:①发生平移时,新图形与原图形的形状、大小完全相同(即:对应线段、对应角均相等);
②对应点之间的线段互相平行(或在同一直线上)且相等,均等于平移距离。
3、画法:掌握平移方向与平移距离,利用对应点(一般指图形的顶点)之间连线段平行、连线段相等性质描出原图形顶点的对应点,再依次连接,就形成平移后的新图形。
第六章平面直角坐标系
一、坐标
1、数轴规定了原点、正方向、单位长度的直线叫数轴。数轴上的点可以用一个数来表示,这个数叫这个点在数轴上的坐标。数轴上的点与实数(包括有理数与无理数)一一对应,数轴上的每一个点都有唯一的一个数与之对应。
2、平面直角坐标系由互相垂直、且原点重合的两条数轴组成。横向(水平)方向的为横轴(x轴),纵向(竖直)方向的为纵轴(y轴),平面直角坐标系上的任一点,都可用一对有序实数对来表示位置,这对有序实数对就叫这点的坐标。(即是用有顺序的两个数来表示,注:x在前,y在后,不能随意更改)坐标平面内的点与有序实数对是一一对应的,每一个点,都有唯一的一对有序实数对与之对应。
二、象限及坐标平面内点的特点
1、四个象限平面直角坐标系把坐标平面分成四个象限,从右上部分开始,按逆时针方向分别叫第一象限(或第Ⅰ象限)、第二象限(或第Ⅱ象限)、第三象限(第Ⅲ象限)和第四象限(或第Ⅳ象限)。
2、坐标平面内点的位置特点①、坐标原点的坐标为(0,0);
②、第一象限内的点,x、y同号,均为正;③、第二象限内的点,x、y异号,x为负,y为正;
④、第三象限内的点,x、y同号,均为负;⑤、第四象限内的点,x、y异号,x为正,y为负;
⑥、横轴(x轴)上的点,纵坐标为0,即(x,0),所以,横轴也可写作:y=0(表示一条直线)
⑦、纵轴(y轴)上的点,横坐标为0,即(0,y),所以,纵横也可写作:x=0(表示一条直线)
例:若P(x,y),已知xy>0,则P点在第象限,已知xy<0,则P点在第象限。
3、点到坐标轴的距离坐标平面内的点的横坐标的绝对值表示这点到纵轴(y轴)的距离,而纵坐标的绝对值表示这点到横轴(x轴)的距离。例:点A(-3,7)表示到横轴的距离为,到纵轴的距离为;点B(-9,0)表示到横轴的距离为,到纵轴的距离为。
注:①、已知点的坐标求距离,只有一个结果,但已知距离求坐标,则因为点的坐标有正有负,可能有多个解的情况,应注意不要丢解。例:点P(x,y)到x轴的距离是3,到y轴的距离是7,求点P的坐标为。
再例:已知A(3,2),AB平行x轴,且AB=4,求B点的坐标为。
②、坐标平面内任意两点A(x1,y1)、B(x2,y2)之间的距离公式为:d=根号下[(x1-x2)^2+(y1-y2)^2]
4、坐标平面内对称点坐标的特点
①、一个点A(a,b)关于x轴对称的点的坐标为A'(a,-b),特点为:x不变,y相反;例:A(-3,5)关于x轴对称的点的坐标为A'(,)
②、一个点A(a,b)关于y轴对称的点的坐标为A'(-a,b),特点为:y不变,x相反;例:A(-3,5)关于y轴对称的点的坐标为A'(,)
③、一个点A(a,b)关于原点对称的点的坐标为A'(-a,-b),特点为:x、y均相反。例:A(-3,5)关于原点对称的点的坐标为A'(,)