订单查询
首页 其他文档
人教版七年级下数学知识点归纳总结3篇
大小:64.52KB 15页 发布时间: 2022-08-15 10:58:44 3.99k 3.62k

5、平行于坐标轴的直线的表示

①、平行于横轴(x轴)的直线上的任意一点,其横坐标不同,纵坐标均相等,所以,可表示为:y=a(a为纵坐标)的形式,a的绝对值表示这条直线到x轴的距离,直线上两点之间的距离等于这两点横坐标之差的绝对值;

②、平行于纵轴(y轴)的直线上的任意一点,其纵坐标不同,横坐标均相等,所以,可表示为:x=b(b为横坐标)的形式,b的绝对值表示这条直线到y轴的距离,直线上两点之间的距离等于这两点纵坐标之差的绝对值。

6、象限角平分线的特点

①、第一、三象限的角平分线可表示为y=x的形式,即角平分线上的点的纵坐标与横坐标相等(同号);例:A(3,)和B(-5,)均在第一、三象限的角平分线上。

②、第二、四象限的角平分线可表示为y=-x的形式,即角平分线的点的纵坐标与横坐标互为相反数(异号)。例A(-3,)和B(5,)均在第二、四象限的角平分线上。

三、坐标方法的简单应用

1、求面积

①、已知三角形的顶点坐标求三角形的面积将坐标平面上的三角形的面积转化为几个图形的面积的组合(相加)或分解(相减),即将要求的三角形面积转化为一个大的多边形(例如矩形或梯形)与一个或几个较小的三角形面积之差;例:ⅰ、已知平面直角坐标系中,点A(2,4),点B(6,2),求△AOB的面积?

ⅱ、已知A(-4,3),B(0,0),C(-2,-1),求△ABC的面积?

②、已知多边形各顶点坐标求多边形的面积将坐标平面上的多边形的面积分割成几个规则的图形组合的面积之和,或转化为一个更大的多边形(例如矩形或梯形)与一个或几个较小的三角形面积之差。

2、平移

①、点的平移一个点左、右(水平)平移,横坐标改变,纵坐标不变。具体为:向左平移几个单位,则横坐标减少几个单位;向右平移几个单位,则横坐标增加几个单位。“左减右加”

一个点上、下(竖直)平移,纵坐标改变,横坐标不变。具体为:向下平移几个单位,则纵坐标减少几个单位;向上平移几个单位,则纵坐标增加几个单位。“下减上加”

②、图形的平移图形是由无数个点组成的,所以,图形的平移实质上就是点的平移。关键是把图形的各个顶点按要求横向或纵向平移,描出平移后的对应顶点,再连接全部对应顶点即可。

注:图形平移后的新图形与原图形在形状、大小方面是完全相同的,唯一改变的是原图形的位置。

3、中点坐标公式

对于平面直角坐标系内任意两点M(a1,b1)、N(a2,b2),它们的中点的坐标为:((a1+a2)/2,(b1+b2)/2)

例:已知点A(5,-8)和点B(-3,2),线段AB的中点的坐标为:(,)。

第七章三角形

一、概念

由三条不在同一直线上的线段首尾顺次相连而构成的平面图形叫三角形。

注意其中:①不在同一直线上(或说不共线);②是三条线段;③首尾顺次相连这三个条件缺一不可。

二、分类

(1)按角分类:分为斜三角形(包括锐角三角形和钝角三角形)

直三角形(即直角三角形)

(2)按边分类:分为不等边三角形

等腰三角形(包括只有两边相等/或说是底腰不等的三角形和三边相等/即等边的三角形)

注:①、等边三角形是特殊的等腰三角形;

②、一个三角形中最多只有一个钝角,最少有二个锐角。

三、三角形的三边关系

1、三角形的三边关系定理:三角形的任意两边之和大于第三边。(即a+b>c,或a+c>b,或b+c>a)

2、推论:三角形的任意两边之差小于第三边。

特别注意:(1)、以上两点就是判断任意给定的三条线段能否组成三角形的条件,但在实际做题时,并不需要去分析全部三组边的大小关系,可简化为:当三条线段中最长的线段小于另两条较短线段之和时,或当三条线段中最短的线段大于另两条较长线段之差的绝对值时,即可组成三角形。

(2)、已知三角形的两边a,b(a>b),则第三边c的取值范围为:a–b

(3)、并不需要知道三条线段的具体长度,而只要根据它们长度的比值,即可判断是否可组成三角形。

四、有关三角形边长的综合问题

1、等腰三角形:等腰三角形有两相等的腰和一底边,题目中往往并不直接说明腰和底边,因此,解题时要分类讨论,以免丢解。

例ⅰ:等腰三角形的周长为24cm,其中两条边长的比为3:2,求该等腰三角形的三边长。

例ⅱ:已知等腰三角形的周长是16cm,

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441