九、多边形及其内角和、外角和
1、概念:由不在同一直线上的一些线段首尾顺次相接组成的平面图形叫做多边形。三角形是最简单的多边形。
注:①、多边形分为凸多边形和凹多边形,我们初中阶段只研究凸多边形。凸多边形:整个多边形都在任何一条边所在直线的同一侧,这样的多边形叫凸多边形。
②、正多边形:各个内角都相等,各条边都相等的多边形叫正多边形。(注:边、角均相等两条件缺一不可)
③、各边都相等的多边形不一定是正多边形,例如菱形;各内角都相等的多边形不一定是正多边形,例如矩形。
2、多边形的内角和定理:n边形内角和等于:(n-2)×180°
推导方法(1):由n边形的一个顶点出发,作n边形的对角线,一共可以作(n-3)条对角线,这些对角线把原来的n边形分成了(n-2)个三角形,由三角形的内角和等于180°,可得出该n边形的内角和为:(n-2)×180°
推导方法(2):在n边形的一边上任取一点,由这一点出发,连接n边形的各个顶点(与所取点相邻的两个顶点除外),一共可以作(n-2)条连接线段,这些线段把原来的n边形分成了(n-1)个三角形,但却多出了一个平角,所以,该n边形的内角和为:(n-1)×180°-180°=(n-2)×180°
推导方法(3):在n边形内任取一点,由这一点出发,连接n边形的各个顶点,一共可以作n条连接线段,这些线段把原来的n边形分成了n个三角形,但中间却多出了一个周角,所以,该n边形的内角和为:n×180°-360°=(n-2)×180°
注:①、正n边形的每一个内角都等于[(n-2)×180°]/n②、多边形的内角和是180°的整倍数。
③、若多边形的边数增加n条,则它的内角和增加n×180°④、若多边形的边数扩大2倍,则它的内角和增加n×180°⑤、若多边形的边数扩大m倍,则它的内角和增加(m-1)×n×180°
例:一个多边形的所有内角和其中一个外角的度数和是1335°,这是个边形,这个外角为度。
一个多边形除了一个内角外,其余内角之和为1680°,则这个多边形是边形,这个内角为度。
3、多边形的外角和:多边形的外角和是一个定值,恒等于360°。指的是取多边形每一个顶点处的一个外角相加的和,故n边形的外角和指的是n个外角相加的和。多边形的外角和与边数无关。
注:①、n边形有[n×(n-3)]/2条对角线。例:十边形有[10×(10-3)]/2=35条对角线
②、在运用多边形的内角和公式与外角的性质求值时,常与方程思想相结合,运用方程思想是解决本节运算的常用方法。
③、在解决握手次数、通电话次数以及单循环赛比赛场数问题时,可以建立多边形模型,此类问题即为多边形的边数+对角线的条数
例:①、已知多边形的每一个内角都等于150°,则这个多边形的外角和是°,内角和为°
②、一个多边形的内角和与某一个外角的度数总和为1350°,则此多边形为边形。
③、一个多边形除了一个内角外,其余内角之和为1680°,则这个多边形是边形。
④、已知∠ABC的两边分别与∠DEF的两边垂直,则∠ABC和∠DEF的大小关系是互补或相等。试画图说明。
⑤、六个人去参加会议,要求每两人之间要握一次手,那么这六个人共要握多少次手?(把六个人看作六个点)
人教版七年级下数学知识点归纳总结2
十、镶嵌
当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角时,就能拼成一个平面图形。
1、用同一种多边形镶嵌:这种多边形可以不是正多边形(例如三角形、长方形、平行四边形、菱形、梯形等),也可以是正多边形(例如正三角形、正方形、正六边形)。三角形,四边形均可单独镶嵌。
2、用多种多边形镶嵌:则每种多边形必须是正多边形。例如:3个正三角+2个正方形,4个正三角形+1个正六边形,2个正三角形+2个正六边形,1个正方形+2个正八边形,2个正五边形+1个正十边形,1个正六边形+2个正十二边形,1个正三角形+1个正八边形+1个正二十四边形,1个正方形+1个正六边形+1个正十二边形,1个正三角形+2个正方形+1个正六边形,如此等等。
例:小明家需要购买地板砖铺房间地面,现有正三角形、正四边形、正五边形、正六边形、正十二边形这五种地板砖,则能有哪几种选择?
第八章二元一次方程组
一、二元一次方程组
1、概念:二元一次方程:含有两个未知数,且未知数的指数(即次数)都是1的方程,叫二元一次方程。
二元一次方程组:两个二元一次方程(或一个是一元一次方程,另一个是二元一次方程;或两个都是一元一次方程;但未知数个数仍为两个)合在一起,就组成了二元一次方程组。
2、二元一次方程的解和二元一次方程组的解:
使二元一次方程左右两边的值相等(即等式成立)的两个未知数的值,叫二元一次方程的解。
使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫二元一次方程组的解。
注:①、因为二元一次方程含有两个未知数,所以,二元一次方程的解是一组(对)数,用大括号联立;②、一个二元一次方程的解往往不是唯一的,而是有许多组;③、而二元一次方程组的解是其中两个二元一次方程的公共解,一般地,只有唯一的一组,但也可能有无数组或无解(即无公共解)。
二元一次方程组的解的讨论:
已知二元一次方程组①、当a1/a2≠b1/b2时,有唯一解;②、当a1/a2=b1/b2≠c1/c2时,无解;③、当a1/a2=b1/b2=c1/c2时,有无数解。
3、用含一个未知数的代数式表示另一个未知数:
用含X的代数式表示Y,就是先把X看成已知数,把Y看成未知数;用含Y的代数式表示X,则相当于把Y看成已知数,把X看成未知数。