订单查询
首页 其他文档
人教版八年级数学上册知识点总结归纳4篇
大小:39.26KB 20页 发布时间: 2022-08-15 12:00:30 4.34k 4.19k

没有钝角.

4.在运用多边形的内角和公式与外角的性质求值时,常与方程思想相结合,运用方程思想是解决本节

问题的常用方法.

5.在解决多边形的内角和问题时,通常转化为与三角形相关的角来解决.三角形是一种基本图形,是

研究复杂图形的基础,同时注意转化思想在数学中的应用.

经典例题透析

类型一:多边形内角和及外角和定理应用

1.一个多边形的内角和等于它的外角和的5倍,它是几边形?

总结升华:本题是多边形的内角和定理和外角和定理的综合运用.只要设出边数,根据条件列出关于的方程,求出的值即可,这是一种常用的解题思路.

举一反三:

【变式1】若一个多边形的内角和与外角和的总度数为1800°,求这个多边形的边数.

【变式2】一个多边形除了一个内角外,其余各内角和为2750°,求这个多边形的内角和是多少?

【答案】设这个多边形的边数为,这个内角为,

.

【变式3】一个多边形的内角和与某一个外角的度数总和为1350°,求这个多边形的边数。

类型二:多边形对角线公式的运用

【变式1】一个多边形共有20条对角线,则多边形的边数是().

A.6 B.7 C.8 D.9

【变式2】一个十二边形有几条对角线。

总结升华:对于一个n边形的对角线的条数,我们可以总结出规律条,牢记这个公式,以后只要用相应的n的值代入即可求出对角线的条数,要记住这个公式只有在理解的基础之上才能记得牢。

类型三:可转化为多边形内角和问题

【变式1】如图所示,∠1+∠2+∠3+∠4+∠5+∠6=.

【变式2】如图所示,求∠A+∠B+∠C+∠D+∠E+∠F的度数。

类型四:实际应用题

4.如图,一辆小汽车从P市出发,先到B市,再到C市,再到A市,最后返回P市,这辆小汽车共转了多少度角?

思路点拨:根据多边形的外角和定理解决.

举一反三:

【变式1】如图所示,小亮从A点出发前进10m,向右转15°,再前进10m,又向右转15°,…,这样一直走下去,当他第一次回到出发点时,一共走了m.

【变式2】小华从点A出发向前走10米,向右转36°,然后继续向前走10米,再向右转36°,他以同样的方法继续走下去,他能回到点A吗?若能,当他走回点A时共走了多少米?若不能,写出理由。

【变式3】如图所示是某厂生产的一块模板,已知该模板的边AB∥CF,CD∥AE.按规定AB、CD的延长线相交成80°角,因交点不在模板上,不便测量.这时师傅告诉徒弟只需测一个角,便知道AB、CD的延长线的夹角是否合乎规定,你知道需测哪一个角吗?说明理由.

思路点拨:本题中将AB、CD延长后会得到一个五边形,根据五边形内角和为540°,又由AB∥CF,CD∥AE,可知∠BAE+∠AEF+∠EFC=360°,从540°中减去80°再减去360°,剩下∠C的度数为100°,所以只需测∠C的度数即可,同理还可直接测∠A的度数.

总结升华:本题实际上是多边形内角和的逆运算,关键在于正确添加辅助线.

类型五:镶嵌问题

5.分别画出用相同边长的下列正多边形组合铺满地面的设计图。

(1)正方形和正八边形;

(2)正三角形和正十二边形;

(3)正三角形、正方形和正六边形。

思路点拨:只要在拼接处各多边形的内角的和能构成一个周角,那么这些多边形就能作平面镶嵌。

解析:正三角形、正方形、正六边形、正八边形、正十二边形的每一个内角分别是60°、90°、120°、135°、150°。

我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441