2.完全平方公式
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即。
口决:首平方,尾平方,2倍乘积在中央。
结构特征:
①公式左边是二项式的完全平方;
②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。
在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现这样的错误。
添括号法则:添括号是,如果括号前面是正号,括到括号里的各项都不变符号;
如果括号前面是负号,括到括号里的各项都改变符号。即添正不变号,添负各项变号。
去括号法则同样。
第三节:整式的除法
1.同底数幂的除法法则:一般地,有(a≠0,m、n都是正整数,且m>n),即同底数幂相除,底数不变,指数相减。
在应用时需要注意以下几点:
①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0。
②任何不等于0的数的0次幂等于1,即,如100=1,(-2.5)0=1,则00无意义。
③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;当a<0时,a-p的值可能是正也可能是负的,如
,;
④运算要注意运算顺序。
2.整式的除法
1)单项式除法单项式
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;
2)多项式除以单项式
多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加。
特点:把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。
第四节:因式分解
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。因式分解与整式乘法是互逆关系。
因式分解与整式乘法的区别和联系:
(1)整式乘法是把几个整式相乘,化为一个多项式;
(2)因式分解是把一个多项式化为几个因式相乘。
分解因式的一般方法:
1.提公共因式法
如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。这种分解因式的方法叫做提公因式法。
如:。
概念内涵:
(1)因式分解的最后结果应当是“积”;
(2)公因式可能是单项式,也可能是多项式;
(3)提公因式法的理论依据是乘法对加法的分配律,即:
易错点点评:
(1)注意项的符号与幂指数是否搞错;
(2)公因式是否提“干净”;