(4)、和坐标轴平行的直线上点的坐标的特征
位于平行于_轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。
(5)、关于_轴、y轴或原点对称的点的坐标的特征
点P与点p’关于_轴对称横坐标相等,纵坐标互为相反数,即点P(_,y)关于_轴的对称点为P’(_,―y)
点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数,即点P(_,y)关于y轴的对称点为P’(―_,y)
点P与点p’关于原点对称横、纵坐标均互为相反数,即点P(_,y)关于原点的对称点为P’(―_,―y)
(6)、点到坐标轴及原点的距离
点P(_,y)到坐标轴及原点的距离:
(1)点P(_,y)到_轴的距离等于|y|;
(2)点P(_,y)到y轴的距离等于|_|;
(3)点P(_,y)到原点的距离等于根号___+y_y
初二数学上册知识点15
学好知识就需要平时的积累。知识积累越多,掌握越熟练,编辑了人教版初二上册数学期中复习知识点:立方根,欢迎参考!
立方根
读作“三次根号a”其中,a叫做被开方数,3叫做根指数。(a等于所有数,包括0)如果被开方数还有指数,那么这个指数(必须是三能约去的)还可以和三次根号约去。
求一个数a的立方根的运算叫做开立方。
立方根的性质:
⑴正数的立方根是正数.⑵负数的立方根是负数.⑶0的立方根是0.一般地,如果一个数X的立方等于a,那么这个数X就叫做a的立方根(cuberoot,也叫做三次方根)。如2是8的立方根,-3分之2是-27分之8的立方根,0是0的立方根。
立方和开立方运算,互为逆运算。
互为相反数的两个数的立方根也是互为相反数。
负数不能开平方,但能开立方。
立方根如何与其他数作比较?
⑴做这两个数的立方
⑵作差
⑶比较被开方数(如三次根号3大于三次根号2)
任何数(正数、负数、或零)的立方根如果存在的话,必定只有一个.
平方根与立方根的区别与联系
一、区别
⑴根指数不同:平方根的根指数为2,且可以省略不写;立方根的根指数为3,且不能省略不写。
⑵被开方的取值范围不同:平方根中被开方数必需为非负数;立方根中被开方数可以为任何数。
⑶结果不同:平方根的结果除0之外,有两个互为相反的结果;立方根的结果只有一个。
二、连系
二者都是与乘方运算互为逆运算
初二数学上册知识点16
1、确定位置
在平面内,确定物体的位置一般需要两个数据
2、平面直角坐标系及有关概念
①平面直角坐标系
在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。