即:爸爸年龄不变,还是34岁
妹妹的年龄变化一份,哥哥的年龄变化2份
那么哥哥年龄还是妹妹年龄的2倍
所以,三人年龄和为64岁这年
妹妹:(64-34)÷(2+1)=10
分析:根据题意,年龄问题中,每个人的年龄是一起增长的,并且增长的岁数是一样的,再根
据题意解答即可.
解答:解:当妹妹9岁时,设哥哥年龄为x岁,爸爸为(3x)岁;当爸爸年龄为34岁时,这时,
爸爸增长的年龄是:(34-3x)岁,哥哥和妹妹也是增长的这个岁数,那么妹妹为[9+(34-3x)]
岁,哥哥为[x+(34-3x)]岁,根据题意可得:
2×[9+(34-3x)]=x+(34-3x)
2×9+34-3x=x
4x=52
x=13;
即:妹妹9岁时,哥哥13岁,爸爸13×3=39(岁),这时三人的年龄和是:9+13+39=61(岁);
当三人的年龄和增加到64岁时,每个人增长的年龄是:(64-61)÷3=1(岁),
故现在:妹妹的年龄是:9+1=10(岁),哥哥的年龄是:13+1=14(岁),爸爸的年龄是:39+1=40
(岁).
答:现在妹妹的年龄是10岁,哥哥的年龄是14岁,爸爸的年龄是40岁.
点评:根据题意,年龄的增长是一样的,这是解决本题的关键,然后再根据题意解答即可.
38.B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.
乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,
以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过
来后返回B地至少要用多少时间?
分析:先追近的时间更少,我选择让丙先去追后出发的乙.解答:解:我选择让丙先去追后出
发的乙,10÷(3-1)=5分钟追上,
拿到信后去追甲,甲乙相距甲行10+10+10+5+5=40分钟的路程,
丙用40÷(3-1)=20分钟追上甲
交换信后返回追乙,这时乙丙相距乙行40+20×2=80分钟的路程,
丙用80÷(3-1)=40分钟追上乙,把信交给乙.
所以,共用了5+20+40=65分钟.
乙共行了65+10=75分钟,丙回到B地还要75÷3=25分钟.
所以共用去65+25=90分钟
又想到一个思路,追上并返回.
追上乙并返回,需要10÷(3-1)×2=10分钟
追上甲并返回,需要10×3÷(3-1)×2=30分钟
再追上乙并返回,需要(10×2+30)÷(3-1)×2=50分钟
共用10+30+50=90分钟
故答案为:90点评:此题主要问的是最少多少分钟,所以让乙那到信掉头走时关键.
我选择让丙先去追后出发的乙,10÷(3-1)=5分钟追上,