小结
复习参考题
第二章平面向量
2.1平面向量的实际背景及基本概念——阅读与思考向量及向量符号的由来
2.2平面向量的线性运算
2.3平面向量的基本定理及坐标表示
2.4平面向量的数量积
2.5平面向量应用举例——阅读与思考向量的运算(运算律)与图形性质
小结
复习参考题
第三章三角恒等变换
3.1两角和与差的正弦、余弦和正切公式——信息技术应用利用信息技术制作三角函数表
3.2简单的三角恒等变换
复习参考题
1.
正角:按逆时针方向旋转形成的角叫做正角。
按边旋转的方向分零角:如果一条射线没有作任何旋转,我们称它形成了一个零角。
角负角:按顺时针方向旋转形成的角叫做负角。
的第一象限角{α|k2360°<α<90°+k2360°,k∈Z}
分第二象限角{α|90°+k2360°<α<180°+k2360°,k∈Z}类第三象限角{α|180°+k2360°<α<270°+k2360°,k∈Z}第四象限角{α|270°+k2360°<α<360°+k2360°,k∈Z}或{α|-90°+k2360°<α 3.几种特殊位置的角: ⑴终边在x轴上的非负半轴上的角:α=k2360°,k∈Z ⑵终边在x轴上的非正半轴上的角:α=180°+k2360°,k∈Z⑶终边在x轴上的角:α=k2180°,k∈Z ⑷终边在y轴上的角:α=90°+k2180°,k∈Z⑸终边在坐标轴上的角:α=k290°,k∈Z ⑹终边在y=x上的角:α=45°+k2180°,k∈Z ⑺终边在y=-x上的角:α=-45°+k2180°,k∈Z或α=135°+k2180°,k∈Z⑻终边在坐标轴或四象限角平分线上的角:α=k245°,k∈Z 4.弧度:在圆中,把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad表示。 5.6.如果半径为r的圆的圆心角α所对弧的长为l,那么,角α相关公式7.角度制与弧度制的换算8.单位圆:在直角坐标系中,我们称以原点O为圆心,以单位长度为半径的圆为单位圆。 9.利用单位圆定义任意角的三角函数:设α是一个任意角,它的终边与单位圆交于点P(x,y)那么:⑴y叫做α的正弦,记作sinα即⑵x叫做α的余弦,记作cosα⑶ y叫做α的正切,记作tanαx22 10.sincos1sin;cos 同角三角函数的基本关系α≠kπ+ 11.三角函数的诱导公式: πnis(k∈Z)】:ant2cos 公sink2sin式cosk2cos一tank2tan【注】其中kZ 公sinsin公sinsin式cos cos 式coscos 公sinsin式coscos四tantan 公sincos