订单查询
首页 其他文档
高一数学知识点全面总结归纳
大小:21.54KB 8页 发布时间: 2023-01-04 16:28:38 16.78k 15.43k

即若a(x1,y1),则a(x1,y1)

20.当且仅当x1y2-x2y1=0时,向量a、b(b≠0)共线

x1x2y1y2

21.定比分点坐标公式:当P1PPP2时,P点坐标为(,)

11

①当点P在线段P1P2上时,点P叫线段P1P2的内分点,λ>0②当点P在线段P1P2的延长线上时,P叫线段P1P2的外分点,λ<-1;当点P在线段P1P2的反向延长线上时,P叫线段P1P2的外分点,-1<λ<0.22.从一点引出三个向量,且三个向量的终点共线,

B

则OCOAOB,其中λ+μ=1

23.数量积(内积):已知两个非零向量a与b,我们把数量|a||b|cos叫做a与b的数量积(或内积),记作a2b即a2b=|a||b|cos。

其中θ是a与b的夹角,

|a|cos(|b|cos)叫做向量a在b方向上(b在a方向上)的投影。

我们规定,零向量与任一向量的数量

积为0。

24.a2b的几何意义:数量积a2b等于a的长度|a|与b在a的方向上的投影|b|cos的乘积。

25.数量积的运算定律:①a2b=b2a②(λa)2b=λ(a2b)=a2(λb)③(a+b)2c=a2c+b2c22222222④(ab)a2abb⑤(ab)a2abb⑥(ab)(ab)ab

26.两个向量的数量积等于它们对应坐标的乘积的和。

即abx1x2y1y2。

则:

22

2

①若a(x,y),则|a|xy,或|a|。

如果表示向量a的有向线段的起点和中点的坐标分别为(x2x1,y2y1)

(x1,y1)(x2,y2)、,那么a,|a|

(x1,y1)(x2,y2)②设a,b,则abx1x2y1y20ab0

(x1,y1)(x2,y2)27.设a、b都是非零向量,a,b,θ是a与b的夹角,根据向量数量积的定义及坐标表

ab

示可得:cos

|a||b|

cs1.两角和的余弦公式【简记C(α+β)】:oos2.两角差的余弦公式【简记C(α-β)】:c

csocsnisniso

coscosnisnis

3.两角和(差)余弦公式的公式特征:①左加号,右减号。

②同名函数之积的和与差。

③α、β叫单角,α±β

叫复角,通过单角的正、余弦求和(差)的余弦值。

④“正用”、“逆用”、“变用”

is4.两角和的正弦公式【简记S(α+β)】:nis5.两角差的正弦公式【简记S(α-β)】:n

isoscosnisnc

nisoscosnisc

6.两角和(差)正弦公式的公式特征及用途:①左右运算符号相同。

反馈
我们采用的作品包括内容和图片全部来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
Copyright @ 2016 - 2024 经验本 All Rights Reserved 版权所有 湘ICP备2023007888号-1 客服QQ:2393136441