即若a(x1,y1),则a(x1,y1)
20.当且仅当x1y2-x2y1=0时,向量a、b(b≠0)共线
x1x2y1y2
21.定比分点坐标公式:当P1PPP2时,P点坐标为(,)
11
①当点P在线段P1P2上时,点P叫线段P1P2的内分点,λ>0②当点P在线段P1P2的延长线上时,P叫线段P1P2的外分点,λ<-1;当点P在线段P1P2的反向延长线上时,P叫线段P1P2的外分点,-1<λ<0.22.从一点引出三个向量,且三个向量的终点共线,
B
则OCOAOB,其中λ+μ=1
23.数量积(内积):已知两个非零向量a与b,我们把数量|a||b|cos叫做a与b的数量积(或内积),记作a2b即a2b=|a||b|cos。
其中θ是a与b的夹角,
|a|cos(|b|cos)叫做向量a在b方向上(b在a方向上)的投影。
我们规定,零向量与任一向量的数量
积为0。
24.a2b的几何意义:数量积a2b等于a的长度|a|与b在a的方向上的投影|b|cos的乘积。
25.数量积的运算定律:①a2b=b2a②(λa)2b=λ(a2b)=a2(λb)③(a+b)2c=a2c+b2c22222222④(ab)a2abb⑤(ab)a2abb⑥(ab)(ab)ab
26.两个向量的数量积等于它们对应坐标的乘积的和。
即abx1x2y1y2。
则:
22
2
①若a(x,y),则|a|xy,或|a|。
如果表示向量a的有向线段的起点和中点的坐标分别为(x2x1,y2y1)
(x1,y1)(x2,y2)、,那么a,|a|
(x1,y1)(x2,y2)②设a,b,则abx1x2y1y20ab0
(x1,y1)(x2,y2)27.设a、b都是非零向量,a,b,θ是a与b的夹角,根据向量数量积的定义及坐标表
ab
示可得:cos
|a||b|
cs1.两角和的余弦公式【简记C(α+β)】:oos2.两角差的余弦公式【简记C(α-β)】:c
csocsnisniso
coscosnisnis
3.两角和(差)余弦公式的公式特征:①左加号,右减号。
②同名函数之积的和与差。
③α、β叫单角,α±β
叫复角,通过单角的正、余弦求和(差)的余弦值。
④“正用”、“逆用”、“变用”
is4.两角和的正弦公式【简记S(α+β)】:nis5.两角差的正弦公式【简记S(α-β)】:n
isoscosnisnc
nisoscosnisc
6.两角和(差)正弦公式的公式特征及用途:①左右运算符号相同。