韩信作为中国历史上赫赫有名的军事思想“谋战”派代表人物,被后人奉为“兵仙”和“战神”。后人对韩信作战点兵也有相关的歇后语哦,你知道韩信点兵的歇后语,下一句是什么吗?韩信点兵歇后语对什么呢?一起来看看吧。
韩信点兵——多多益善。
释义:形容一样东西或人等越多越好。益:更加,多;善:好。
近义词:贪多务得、贪得无厌。
反义词:清心寡欲、不忮不求、宁缺毋滥。
用来形容越多越好的事物。
例如:为了即将到来的考试,我要多做习题,有多少做多少,正如韩信点兵——多多益善。
刘邦称帝后,韩信被刘邦封为楚王,不久,刘邦接到密告,说韩信接纳了项羽的旧部钟离昧,准备谋反。于是,他采用谋士陈平的计策,假称自己准备巡游云梦泽,要诸侯前往陈地相会。韩信知道后,杀了钟离昧来到陈地见刘邦,刘邦便下令将韩信逮捕。押回洛阳。回到洛阳后,刘邦知道韩信并没谋反的事,又想起他过去的战功,便把他贬为淮阴侯。韩信心中十分不满;但也无可奈何。刘邦知道韩信的心思,有一天把韩信召进宫中闲谈,要他评论一下朝中各个将领的才能,韩信一一说了。当然,那些人都不在韩信的眼中。
刘邦听了,便笑着问他:“依你看来,像我能带多少人马?”“陛下能带十万。”韩信回答。 刘邦又问:“那你呢?”“对我来说,当然越多越好!”刘邦笑着说:“你带兵多多益善,怎么会被我逮住呢?” 韩信知道自己说错了话,忙掩饰说:“陛下虽然带兵不多,但有驾驭将领的能力啊!” 刘邦见韩信降为淮阴侯后仍这么狂妄,心中很不高兴。
后来,刘邦再次出征,刘邦的妻子吕后终于设计杀害了韩信。
人物性格
韩信:才高过人,自负,知己知彼,能言善辩,善战,从容,自傲。
汉高祖刘邦:机智,知人善用,但疑心很大。
秦朝末年,楚汉相争。一次,韩信将1500名将士与楚王大将李锋交战。苦战一场,楚军不敌,败退回营,汉军也死伤四五百人,于是韩信整顿兵马也返回大本营。当行至一山坡,忽有后军来报,说有楚军骑兵追来。只见远方尘土飞扬,杀声震天。汉军本来已十分疲惫,这时队伍大哗。韩信兵马到坡顶,见来敌不足五百骑,便急速点兵迎敌。他命令士兵3人一排,结果多出2名;接着命令士兵5人一排,结果多出3名;他又命令士兵7人一排,结果又多出2名。韩信马上向将士们宣布:我军有1073名勇士,敌人不足五百,我们居高临下,以众击寡,一定能打败敌人。汉军本来就信服自己的统帅,这一来更相信韩信是“神仙下凡”、“神机妙算”。于是士气大振。一时间旌旗摇动,鼓声喧天,汉军步步进逼,楚军乱作一团。交战不久,楚军大败而逃。
原文
中国有一本数学古书《孙子算经》也有类似的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。”
术曰:“三三数剩一置几何?答曰:五乘七乘二得之七十。
五五数剩一复置几何?答曰,三乘七得之二十一是也。
七七数剩一又置几何?答曰,三乘五得之十五是也。
三乘五乘七,又得一百零五。
则可知已,又三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得。”
在一千多年前的《孙子算经》中,有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”按照今天的话来说:一个数除以3余2,除以5余3,除以7余2,求这个数。这样的问题,也有人称为“韩信点兵”。它形成了一类问题,也就是初等数论中的解同余式。
①有一个数,除以3余2,除以4余1,问这个数除以12余几?
解:除以3余2的数有:2,5,8,11,14,17,20,23……
它们除以12的余数是:2,5,8,11,2,5,8,11……
除以4余1的数有:1,5,9,13,17,21,25,29……
它们除以12的余数是:1,5,9,1,5,9……
一个数除以12的余数是唯一的。上面两行余数中,只有5是共同的,因此这个数除以12的余数是5。如果我们把①的问题改变一下,不求被12除的余数,而是求这个数。很明显,满足条件的数是很多的,它是5+12×整数,整数可以取0,1,2,……,无穷无尽。事实上,我们首先找出5后,注意到12是3与4的最小公倍数,再加上12的整数倍,就都是满足条件的数。这样就是把“除以3余2,除以4余1”两个条件合并成“除以12余5”一个条件。《孙子算经》提出的问题有三个条件,我们可以先把两个条件合并成一个。然后再与第三个条件合并,就可找到答案。
②一个数除以3余2,除以5余3,除以7余2,求符合条件的最小数。
解:先列出除以3余2的数:2,5,8,11,14,17,20,23,26……
再列出除以5余3的数:3,8,13,18,23,28……
这两列数中,首先出现的公共数是8。3与5的最小公倍数是15。两个条件合并成一个就是8+15×整数,列出这一串数是8,23,38,……,再列出除以7余2的数2,9,16,23,30……
就得出符合题目条件的最小数是23。
事实上,我们已把题目中三个条件合并成一个:被105除余23。